skip to main content


Search for: All records

Creators/Authors contains: "Popat, Ketul C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Slippery surfaces (i.e., surfaces that display high liquid droplet mobility) are receiving significant attention due to their biofluidic applications. Non‐textured, all‐solid, slippery hydrophilic (SLIC) surfaces are an emerging class of rare and counter‐intuitive surfaces. In this work, the interactions of blood and bacteria with SLIC surfaces are investigated. The SLIC surfaces demonstrate significantly lower platelet and leukocyte adhesion (≈97.2% decrease in surface coverage), and correspondingly low platelet activation, as well as significantly lower bacterial adhesion (≈99.7% decrease in surface coverage of liveEscherichia Coliand ≈99.6% decrease in surface coverage of liveStaphylococcus Aureus) and proliferation compared to untreated silicon substrates, indicating their potential for practical biomedical applications. The study envisions that the SLIC surfaces will pave the path to improved biomedical devices with favorable blood and bacteria interactions.

     
    more » « less
  3. null (Ed.)
  4. Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces ( i.e. , surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood–material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces. 
    more » « less